

M Model Data Spasial

by: Ahmad Syauqi Ahsan

Peta Tematik

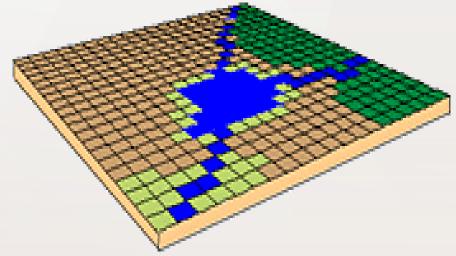
- Data dalam SIG disimpan dalam bentuk peta Tematik
- Peta Tematik: peta yang menampilkan informasi sesuai dengan tema. Satu peta berisi informasi dengan tema yang sama

Contoh:

- Peta Kawasan Konservasi
- Peta Irigasi
- Peta Lahan Kritis
- Peta Wilayah Kecamatan
- Peta Penggunaan Lahan
- Dan lain-lain

Data Spasial

- GIS memodelkan dunia nyata kedalam computer.
- Ahli geografi dan ahli computer telah menghabiskan waktu puluhan tahun untuk meneliti berbagai solusi untuk pemodelan ini. It's complicated.
- Elemen paling dasar yang harus diketahui oleh pengguna GIS adalah struktur data spasial (spatial data structures)


Raster VS Vektor

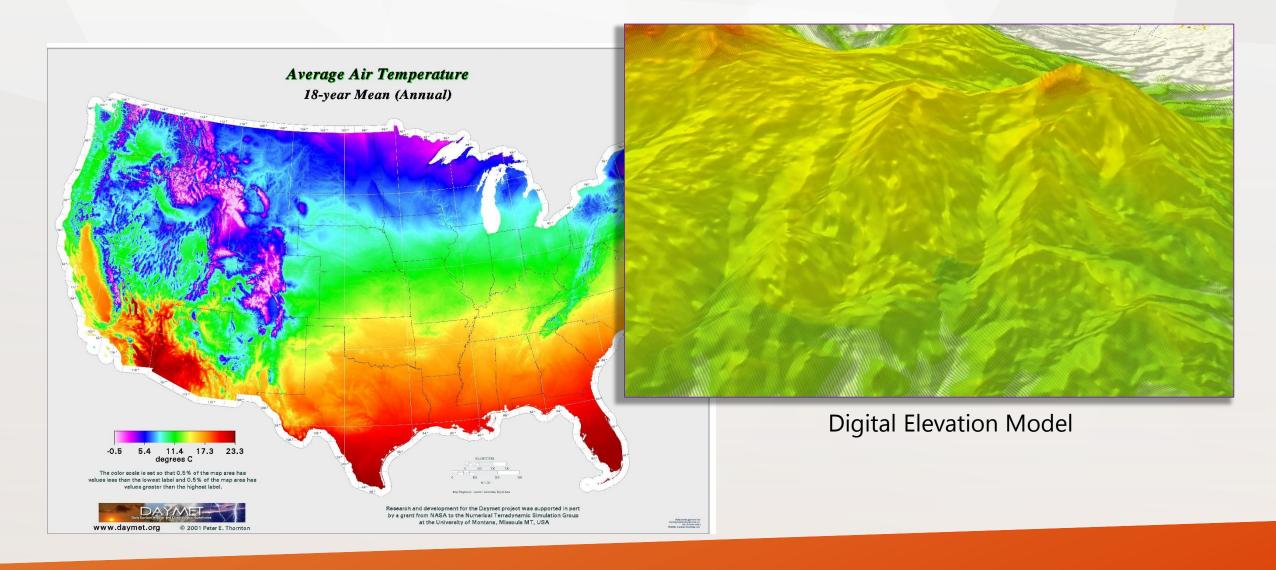
- Dua tipe (format) model data utama dari GIS adalah Raster dan Vektor.
- Objek pada dunia nyata dapat dimodelkan menjadi:
 - titik (point)
 - garis (line), dan
 - poligon (area/region)

Model Data Raster

- Data Raster merupakan data berbasiskan cell seperti foto satelit atau model data ketinggian (Digital Elevation Model – DEM).
- Sederhananya, data raster merupakan tabel raksasa dimana tiap piksel mempunyai nilai antara 0 sampai 255. Nilai ini dapat digunakan untuk merepresentasikan ketinggian, suhu, dan lain-lain.
- Model data raster biasanya digunakan untuk merepresentasikan data dengan variasi yang kontinyu (misal: ketinggian atau suhu).

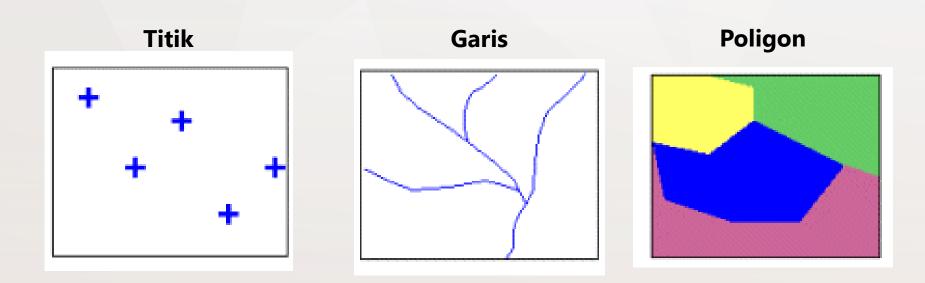
Model Data Raster #2

Kelebihan


- Struktur data sederhana
- Bagus digunakan untuk data kontinyu
- Berbagai tipe fitur (titik, garis, dan poligon) dapat direpresentasikan kedalam satu tipe fitur saja yaitu *cell*.
- Perhitungan peta (map algebra) dapat dilakukan dengan sangat cepat dimana layer data rasters diperlakukan sebagai elemen dalam ekspresi matematis
- Analisa data multi-layer atau multivariate dapat dilakukan dengan mudah (missal: analisa dan pemrosesan gambar satelit)
- Layer raster dapat didapatkan dengan metode yang lebih mudah dan murah

Model Data Raster #3

Kekurangan


- Memerlukan ruang penyimpanan data yang besar
- Tampilan dan akurasi posisinya sangat bergantung pada resolusi spasialnya
- Proses transformasi koordinat dan proyeksi petanya sedikit lebih sulit dilakukan
- Sangat sulit untuk menyajikan hubungan topologi dan jaringan
- Bekerja dengan beberapa layer yang berbeda skala dapat menjadi mimpi buruk

Visualisasi Data Raster

Model Data Vektor

- Objek di dunia nyata dimodelkan dalam bentuk titik (point), garis (line/route), dan poligon (area/region).
- Selain ketiga bentuk dasar tadi, data vector juga dapat direpresentasikan menggunakan TIN (Triangular Irregular Network).

Model Data Vektor #2

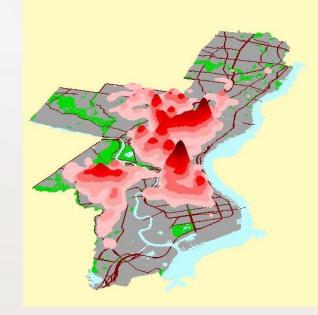
Kelebihan

- Dapat secara akurat merepresentasikan bentuk dan ukuran objek yang sebenarnya
- Dapat menghasilkan keluaran peta dengan kualitas tinggi
- Penggunaan tempat penyimpanan yang efisien
- Cocok untuk merepresentasikan data yang bersifat tidak kontinyu (hotel, danau, jalan, sungai, dll)

Kekurangan

- Struktur data bervariasi mulai dari yang sederhana sampai yang sangat kompleks
- Data unsur spasialnya tidak mudah dimanipulasi
- Beberapa analisa spasial sulit atau bahkan tidak mungkin dilakukan
- Sulit untuk disimulasikan

Surfaces


Surface menambahkan dimensi "z" (tinggi/elevasi) pada koordinat x, y (bias juga diterapkan pada latitude dan longitude).

Semua data yang bersifat kontinyu dapat direpresentasikan sebagai

surface. Seperti:

Data ketinggian

- Data curah hujan
- Data tekanan udara
- Data kepadatan penduduk
- Data tingkat kejahatan
- Dan lain-lain.

Data tingkat kejahatan

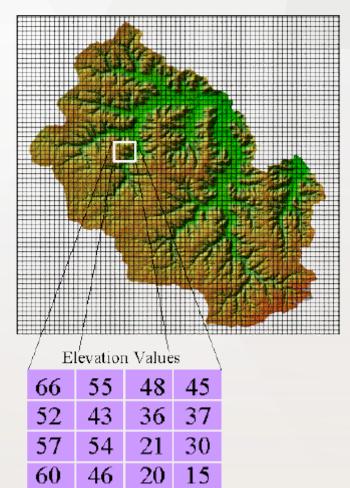
Metode Dasar untuk Menggambarkan Surfaces

- DEM (Digital Elevation Model): merupakan himpunan titik-titik dengan lokasi beraturan yang berdimensi **x-y**, dengan penambahan informasi pada dimensi **z**. Dimensi **z** biasanya digunakan untuk menyimpan informasi ketinggian, tetapi tidak menutup kemungkinan digunakan untuk menyimpan informasi lainnya.
- ❖ TIN (Triangulated Irregular Network): merupakan himpunan segitiga-segitiga yang saling berdempet dan tidak bertumpuk (overlap) dengan koordinat x-y dan ketinggian z untuk setiap vertex-nya. Hubungan topologi antar segitiga-segitiga dengan tetangganya juga turut disimpan dalam TIN.
- Garis Kontur (Contour Line): merupakan himpunan garis-garis dimana setiap garis mempunyai ketinggian z yang sama. Garis-garis tersebut ditampilkan pada interval yang ditentukan.
- Di dalam bentuk digital, terminologi Digital Terrain Model (DTM) dapat digunakan untuk menyebut tiga macam metode representasi diatas.

Penyimpanan Data Surfaces

- Data surface 3D dapat disimpan kedalam ArcGIS menggunakan satu dari dua jenis tipe data berikut ini:
 - Sebagai GRID, yang merupakan model data raster pada ArcInfo
 - Sebagai TIN, yang merupakan bentuk vector dari data surfaces
- * Ketika anda mendownload data surface 3D dari internet, data tersebut dapat berbentuk:
 - Format **DEM**, yang dikembangkan oleh USGS
 - Format **SDTS** (Spatial Data Transfer Standart), yang merupakan standart dari FGDC (Federal Geographic Data Committee).
 - Format **E00** yang merupakan format teks dari ESRI
 - Point & Breaklines
- Untuk melakukan analisa dan visualisasi pada ArcGIS, data surfaces harus dikonversi ke bentuk GRID atau TIN terlebih dahulu
- Garis Kontur dapat disimpan sebagai garis-garis vektor, namun format ini hanya digunakan untuk visualisasi data surfaces saja (tidak untuk analisa).

Digital Elevation Model (DEM)


GRID merupakan format data raster dari ESRI yang dapat digunakan untuk untuk menyimpan data DEM.

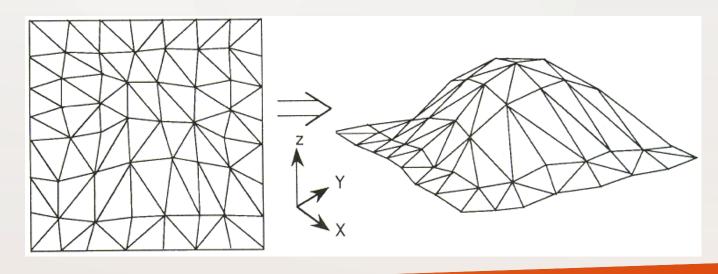
* Kelebihan:

- Konsep pemodelan sederhana.
- Data dapat dibaca dengan mudah dan "murah".
- Mudah untuk dihubungkan dengan data raster yang lain.
- Titik-titik yang terletak tidak beraturan dapat diubah menjadi beraturan dengan interpolasi.

Kekurangan:

- Tidak bisa menyesuaikan dengan keberagaman dalam suatu wilayah (terrain)
- Fitur-fitur yang linier tidak bisa direpresentasikan dengan baik.

TIN (Triangular Irregular Network)

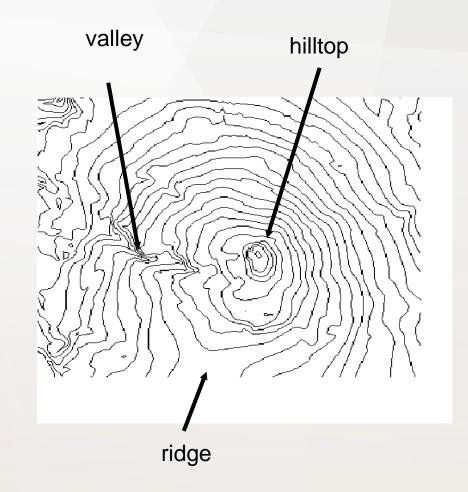

TIN dapat digunakan untuk menyimpan data surfaces (dan DEM) dengan format vektor.

* Kelebihan:

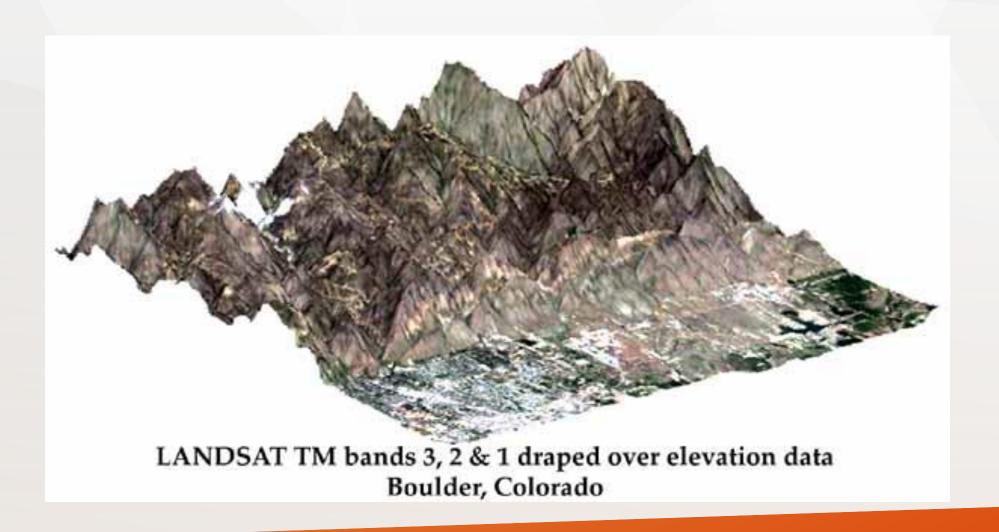
- Efisien. Hanya membutuhkan beberapa segitiga untuk menyimpan data area datar.
- Mudah digunakan untuk beberapa analisa: slope, aspect, volume

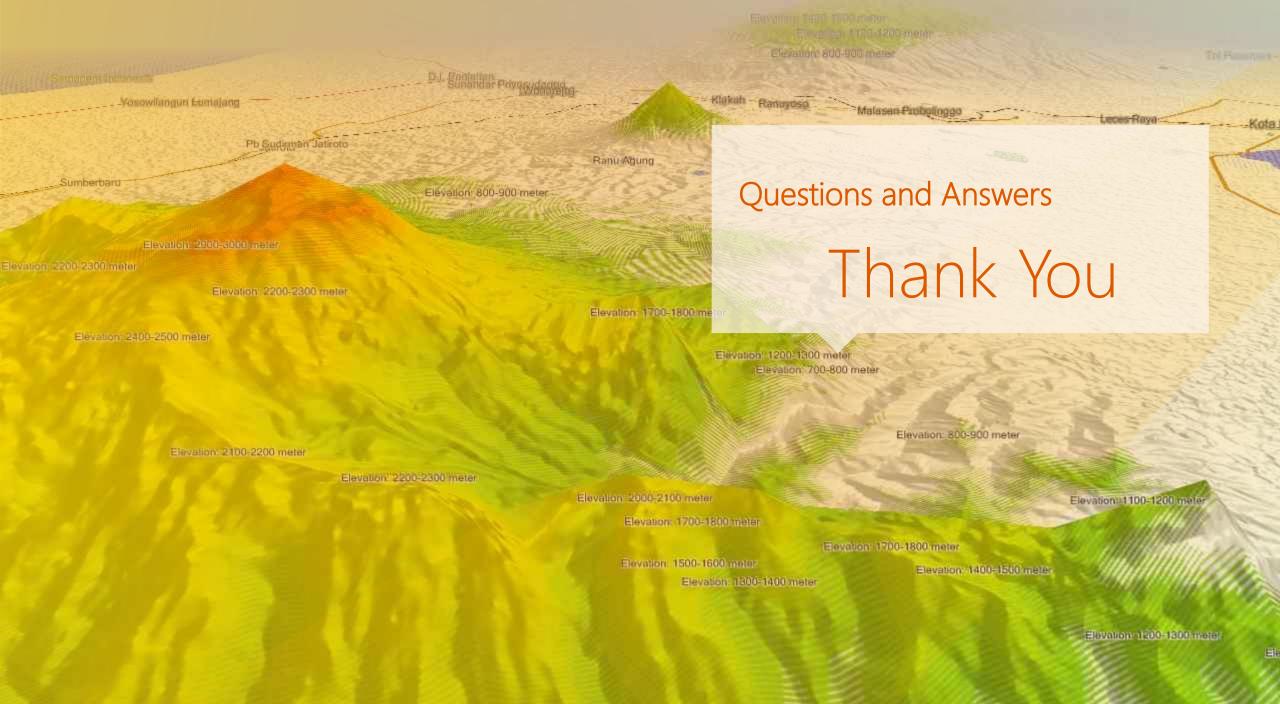
* Kekurangan:

 Analisa yang melibatkan layer lain sulit dilakukan.


Contour (isolines) Lines

* Kelebihan:


- Dipahami oleh kebanyakan orang.
- Mudah memahami arti dari gambar:
 - Close lines = steep slope
 - Uphill V = stream
 - Downhill V = ridge
 - Circle = hill top atau basin


* Kekurangan:

- Susah untuk direpresentasikan di computer, tidak model digital yang baku.
- Harus dikonversikan ke format raster atau TIN untuk proses analisa.

Overlay on 3D Surfaces

